What is Industrial Automation

Industrial automation uses computerized robotic control systems to facilitate the use of manufacturing equipment with minimal human intervention. Unlike manual industrial processes, automation does not require manual human operation of each mechanical aspect of the manufacturing process. 

Benefits of Industrial Automation

Automation has become the mainstay of industrial manufacturing due to its overwhelming cost efficiency and risk mitigation. Ongoing innovations and technological advancements have allowed manufacturers to upgrade their systems to increase product quality and overall productivity without the need for increased labor costs. 

Productivity

Industrial automation increases productivity, as the equipment can be programmed to run 24/7 at greater speeds than manually operated machinery. In addition, there is less worry about scheduling for holidays and weekends for an entire crew of employees. Production can continue apace without interruptions.

Quality

Since the parameters are programmed using computer software, there is less likelihood of costly mistakes due to human error. Automation further allows for more consistent and reliable product quality without the minute variations that commonly occur between workpieces in manual production.

Flexibility

Rather than having to adjust or install equipment for production shifts, automated systems can be configured to allow users to program changes with less manual intervention, facilitating faster and more reliable production adjustments.

Accuracy

Automated systems work in tandem with each part of the system, thereby reducing the risk of error between system components. In addition, computer software is pre-programmed for more accurate production.

Safety

Fewer workers will be needed on the line, and automated safety devices ensure that workers will spend less time in the vicinity of dangerous equipment as it operates. 

Disadvantages of Industrial Automation

The only real disadvantage of industrial automation is the initial investment. While upfront costs may seem intimidating, they are easily offset by the energy and labor savings, enhanced production, and reduced energy use and material waste.

Types of Industrial Automation Systems

Industrial automation is used in a wide variety of manufacturing and fabrication industries. A variety of automation systems have been developed to suit the needs of different applications.

Fixed or Hard Automation

Fixed automation, or hard automation, is used for the performance of a simple and repetitive task. This method is ideal for high-volume production with little variation, as modifications to fixed automation equipment can be expensive and time-consuming.

Programmable Automation

Programmable automation is ideal for batch production, as the automated equipment may be reprogrammed or changed out for each new design. The process requires manual adjustment of machinery between batches.

Flexible or Soft Automation

Flexible automation, or soft automation, uses computer software to direct manufacturing equipment. The equipment used in flexible automation allows for production adjustment without equipment changes.

Integrated Automation

Integrated automation takes from all of the above technologies and combines them into one manufacturing system that is capable of both large-scale and batch production through the use of a computerized control system and a variety of versatile machines. 

Industrial Automation Tools

Industrial automation relies on multiple internal tools. Below is a short list of the most common automation tools.

Programmable Logic Controller (PLC)

A PLC is an industrial computer control system used to manage automatic operations for pre-programmed manufacturing and industrial operations. This system constantly processes and analyzes information from sensors throughout the operation.

Supervisory Control and Data Acquisition (SCADA)

A SCADA system uses sensors and PLC systems throughout the manufacturing process to acquire and record data and events for analysis to enhance and improve system operations.

Human Machine Interface (HMI)

An HMI or Human Machine Interface is the user interface that connects an operator to the controller for an industrial system. The interface consists of hardware and software that allow user inputs to be translated as signals for machines that, in turn, provide the required result to the user. An HMI offers a visual representation of the operation of the machine providing real-time data.

Distributed Control System (DCS)

The DCS is the network that monitors and connects all of the devices and interfaces within the automated system.

Industrial Control Systems with Turner Integrated Systems

At Turner Integrated Systems, we are pleased to provide the highest quality industrial control systems in the industry. For more information on our automated industrial systems, contact us today!

Comments are closed